Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Journal of Southern Medical University ; (12): 1194-1203, 2023.
Article in Chinese | WPRIM | ID: wpr-987036

ABSTRACT

OBJECTIVE@#To improve the classical 4-vessel occlusion (4VO) model established by Pulsinelli and Brierley.@*METHODS@#Thirty-two male SD rats were randomized into sham operation group, I4VO-Con10 group, I4VO-Int10 group and I4VO-Int15 group. The sham surgery group underwent exposure of the bilateral vertebral arteries and carotid arteries without occlusion to block blood flow. The I4VO-Con10 group experienced continuous ischemia by occluding the bilateral vertebral arteries and carotid arteries for 10 minutes followed by reperfusion for 24 hours. The I4VO-Int10 and I4VO-Int15 groups were subjected to intermittent ischemia. The I4VO- Int10 group underwent 5 minutes of ischemia, followed by 5 minutes of reperfusion and another 5 minutes of ischemia, and then reperfusion for 24 hours. The I4VO-Int15 group experienced 5 minutes of ischemia followed by two cycles of 5 minutes of reperfusion and 5 minutes of ischemia, and then reperfusion for 24 hours. The regional cerebral blood flow (rCBF) was monitored with laser Doppler scanning, and survival of the rats was observed. HE staining was used to observe hippocampal pathologies to determine the optimal method for modeling. Another 48 rats were randomized into 6 groups, including a sham operation group and 5 model groups established using the optimal method. The 5 I4VO model groups were further divided based on the reperfusion time points (1, 3, 7, 14, and 28 days) into I4VO-D1, I4VO-D3, I4VO-D7, I4VO- D14, and I4VO- D28 groups. Body weight changes and survival of the rats were recorded. HE staining was used to observe morphological changes in the hippocampal, retinal and optic tract tissues. The Y-maze test and light/dark box test were used to evaluate cognitive and visual functions of the rats in I4VO-D28 group.@*RESULTS@#Occlusion for 5 min for 3 times at the interval of 5 min was the optimal method for 4VO modeling. In the latter 48 rats, the body weight was significantly lower than that of the sham-operated rats at 1, 3, 7, 14 and 28 days after modeling without significant difference in survival rate among the groups. The rats with intermittent vessel occlusion exhibited progressive deterioration of hippocampal neuronal injury and neuronal loss. Cognitive impairment was observed in the rats in I4VO-D28 group, but no obvious ischemic injury of the retina or the optic tract was detected.@*CONCLUSION@#The improved 4VO model can successfully mimic the main pathological processes of global cerebral ischemia-reperfusion injury without causing visual impairment in rats.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Brain Ischemia , Cerebral Infarction , Reperfusion Injury , Body Weight
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 115-125, 2023.
Article in Chinese | WPRIM | ID: wpr-962631

ABSTRACT

ObjectiveTo investigate the mechanism of Huazhuo Jiedu Huoxue Tongluo prescription in alleviating cerebral ischemia-reperfusion injury via regulating nerve cell autophagy based on c-Jun N-terminal kinase(JNK)signaling pathway . MethodSixty SD rats were randomly divided into 6 groups: sham group, middle cerebral artery occlusion/reperfusion (MCAO/R) group (model group), Huazhuo Jiedu Huoxue Tongluo prescription group [traditional Chinese medicine (TCM) group(25.0 g·kg-1)], JNK inhibitor SP600125 (SP) group(5 mg·kg-1), TCM+SP group and JNK agonist Anisomycin (Ani) group(15 mg·kg-1). After 24 h of modeling, TCM group and TCM+SP group were given TCM decoction (ig) for 3 consecutive days, and the other groups were given equal volume of normal saline (ig). Neurological deficit was evaluated by neurological function score and cerebral infarct volume was determined by 2,3,5-triphenyltetrazole chloride (TTC) staining. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the structural changes of brain tissue and the damage of neurons, respectively. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) was performed to detect cell apoptosis. The ultrastructure of autophagosomes was observed by transmission electron microscope. Western blot was employed to detect the protein expressions of microtubule-associated protein 1 light chain 3A/B (LC3A/B), autophagy related 5 (Atg5), the ortholog of yeast Atg6 (Beclin1), p62, B-cell lymphoma 2 (Bcl-2), JNK, phosphorylated (p)-JNK and c-Jun in brain tissue. The mRNA expressions of LC3A/B, Beclin1, p62, Atg5, Bcl-2, JNK and c-Jun were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the sham group, the model group had elevated neurological deficit score (P<0.05), enlarged cerebral infarct volume (P<0.05)and typical infarction manifestations formed in hippocampal region and its surrounding brain tissue. In addition, there were a large number of neuronal cell degeneration, necrosis, liquefaction, nucleus pyknosis and deep staining, and inflammatory cell infiltration in the cortex in the model group, and severe swelling of mitochondria, lysosomes, autophagosomes and autophagolysosomes were clearly seen under electron microscope. TUNEL positive cells were increased (P<0.05), and cell apoptosis was severe. The nuclear membrane and nucleolus of neurons in brain tissue were blurred with discontinuous processes, and Nissl bodies in cytoplasm were stained light with reduced number. Western blot revealed that the model group had up-regulated protein expressions of LC3A/B, Beclin1, Atg5, JNK, p-JNK and c-Jun in brain tissue (P<0.05), while down-regulated protein expressions of p62 and Bcl-2 (P<0.05)as compared with the sham group. Real-time PCR indicated that the mRNA expressions of LC3A/B, Beclin1, Atg5, JNK and c-Jun in the model group were higher (P<0.05) while the mRNA expressions of p62 and Bcl-2 were lower (P<0.05) than those in the sham group. Compared with the conditions in model group, the neurological deficit scores of TCM, SP and TCM+SP groups were lowered (P<0.05), and the cerebral infarct volume was reduced (P<0.05), with improved pathological status of brain tissue, especially in the TCM group. Furthermore, there were abundant and basically normal mitochondrial cristae, slightly dilated endoplasmic reticulum, slightly swollen golgi apparatus, slightly fused nuclear membrane, and few visible lysosomes, autophagosomes and autophagolysosomes. TUNEL positive cells were decreased (P<0.05), displaying reduced apoptosis, especially in the TCM group. The nucleolus and nuclear membrane of neurons in brain tissue were discernible, and Nissl bodies in cytoplasm was reduced to a certain degree as compared with those in the model group. Western blot showed a decrease in the protein expressions of LC3A/B, Beclin1, Atg5, JNK, p-JNK and c-Jun in the TCM group ,the SP group,and the TCM+SP group(P<0.05),while an increase in the protein expressions of p62 in the TCM group and SP group(P<0.05),and an increase in the protein expressions of Bcl-2 in the TCM group and TCM+SP group. By Real-time PCR, the mRNA expressions of LC3A, LC3B, Beclin1, Atg5, JNK and c-Jun had a down-regulation(P<0.05) while the mRNA expression of p62 a up-regulation in the TCM group ,the SP group,and the TCM+SP group(P<0.05),and the mRNA expression of Bcl-2 a up-regulation in the TCM group and the TCM+SP group(P<0.05).Scores of the Ani group were raised (P<0.05), and infarct volume was increased significantly, with aggravated neuronal cell necrosis and obvious inflammatory infiltration. Moreover, there were neuronal nuclear membrane fusion with abnormal protrusion, increased heterochromatin aggregation in edge, severe mitochondrial swelling, endoplasmic reticulum expansion, increased lysosomes, increased intracytoplasmic vesicles, and visible autophagosomes and autophagolysosomes. TUNEL positive cells were increased (P<0.05), representing severe apoptosis. The number of Nissl bodies dropped with light staining, and the nucleolus and nuclear membrane were blurred. Real-time PCR found that the mNRA expressions of Atg5, c-Jun, JNK were up-regulated (P<0.05),while Beclin1, p62, Bcl-2 were were down-regulated in the Ani group (P<0.05). Compared with the TCM group and SP group,the protein expressions of LC3A/B, Beclin1, Atg5, JNK, p-JNK, c-Jun were decreased,and p62, Bcl-2 were increased in the Ani group(P<0.05). Compared with the TCM group,the mRNA expressions of JNK mRNA had a down-regulation in the SP group and TCM+SP group,while LC3A, LC3B, Atg5, c-Jun, JNK had an up-regulation(P<0.05) and Bcl-2 had a down-regulation in the Ani group(P<0.05). Compared with the SP group,the mRNA expressions of Atg5, c-Jun, JNK had an up-regulation(P<0.05), and Beclin1, p62, Bcl-2 had a down-regulation in the Ani group(P<0.05). ConclusionHuazhuo Jiedu Huoxue Tongluo prescription significantly up-regulates the protein and mRNA expressions of LC3A/B, Beclin1, Atg5, JNK, p-JNK and c-Jun, and down-regulates the protein and mRNA expressions of p62 and Bcl-2, suggesting that the prescription can inhibit autophagy through JNK signaling pathway to reduce ischemia/reperfusion injury in rats.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 194-203, 2023.
Article in Chinese | WPRIM | ID: wpr-960923

ABSTRACT

Cerebral ischemia-reperfusion is a serious cerebrovascular disease with high morbidity and mortality. In recent years, reperfusion therapy based on thrombolysis and thrombectomy has been the main treatment method for patients with ischemic stroke. Numerous studies have shown that Chinese medicine saponins can effectively interfere with cerebral ischemia-reperfusion in a multi-target and multi-way manner, which have great potential on the treatment and prevention of cerebral ischemia-reperfusion. Taking China National Knowledge Infrastructure (CNKI) literature database and Wanfang literature database as the analysis sources, this paper used SPSS statistics to summarize the number of papers on the treatment of cerebral ischemia-reperfusion with Chinese medicine saponins and CiteSpace to conduct cluster analysis on the high-frequency keywords of the research, thereby expounding the research hotspots and research status of Chinese medicine saponins in the treatment of cerebral ischemia-reperfusion. Based on literature analysis and summary of animal experiments on the treatment of cerebral ischemia-reperfusion with Chinese medicine saponins in the past two decades, Chinese medicine saponins exerted effects by anti-inflammation, inhibition of oxidative stress, immune regulation, protection of nerve cells, inhibition of thrombosis, promotion of thrombolysis, protection of mitochondria, blood-brain barrier repairing, and other ways. The specific mechanism, therapeutic effect, and signaling pathway of each Chinese medicine saponin have been summarized in this study, which provide a theoretical basis for the in-depth research, new drug development, and clinical application of Chinese medicine saponins for the treatment of cerebral ischemia- reperfusion.

4.
China Journal of Chinese Materia Medica ; (24): 3308-3316, 2023.
Article in Chinese | WPRIM | ID: wpr-981468

ABSTRACT

Based on the O-GlcNAc transferase(OGT)-PTEN-induced putative kinase 1(PINK1) pathway, the mechanism of 3,4-dihydroxybenzaldehyde(DBD) on mitochondrial quality control was investigated. Middle cerebral artery occlusion/reperfusion(MCAO/R) rats were established. SD rats were randomized into sham operation group(sham), model group(MCAO/R), DBD-L group(5 mg·kg~(-1)), and DBD-H group(10 mg·kg~(-1)). After 7 days of administration(ig), MCAO/R was induced in rats except the sham group with the suture method. Twenty-four h after reperfusion, the neurological function and the percentage of cerebral infarct area were measured. Based on hematoxylin and eosin(HE) staining and Nissl staining, the pathological damage of cerebral neurons was examined. Then the ultrastructure of mitochondria was observed under the electron microscope, and the co-localization of light chain-3(LC3), sequestosome-1(SQSTM1/P62), and Beclin1 was further detected by immunofluorescence staining. It has been reported that the quality of mitochondria can be ensured by inducing mitochondrial autophagy through the OGT-PINK1 pathway. Therefore, Western blot was employed to detect the expression of OGT, mitophagy-related proteins PINK1 and E3 ubiquitin ligase(Parkin), and mitochondrial kinetic proteins dynamin-like protein 1(Drp1) and optic atrophy 1(Opa1). The results showed that MCAO/R group had neurological dysfunction, large cerebral infarct area(P<0.01), damaged morphological structure of neurons, decreased number of Nissl bodies, mitochondrial swelling, disappearance of mitochondrial cristae, decrease of cells with LC3 and Beclin1, rise of cells with P62(P<0.01), inhibited expression of OGT, PINK1, and Parkin, up-regulated expression of Drp1, and down-regulated expression of Opa1 compared with the sham group(P<0.01). However, DBD improved the behavioral deficits and mitochondrial health of MCAO/R rats, as manifested by the improved morphology and structure of neurons and mitochondria and the increased Nissl bodies. Moreover, DBD increased cells with LC3 and Beclin1 and decreased cells with P62(P<0.01). In addition, DBD promoted the expression of OGT, PINK1, Parkin, and Opa1 and inhibited the expression of Drp1, enhancing mitophagy(P<0.05, P<0.01). In conclusion, DBD can trigger PINK1/Parkin-mediated brain mitophagy through the OGT-PINK1 pathway, which plays a positive role in maintaining the health of the mitochondrial network. This may be a mitochondrial therapeutic mechanism to promote nerve cell survival and improve cerebral ischemia/reperfusion injury.


Subject(s)
Animals , Rats , Rats, Sprague-Dawley , Beclin-1 , Mitochondria , Cerebral Infarction , Protein Kinases
5.
China Journal of Chinese Materia Medica ; (24): 1076-1086, 2023.
Article in Chinese | WPRIM | ID: wpr-970579

ABSTRACT

Based on GC-MS and network pharmacology, the active constituents, potential targets, and mechanism of essential oil from Gleditsiae Fructus Abnormalis(EOGFA) against cerebral ischemia/reperfusion(I/R) injury were explored, and the effective constituents were verified by experiment. To be specific, GC-MS was used identify the constituents of the volatile oil. Secondly, the targets of the constituents and disease were predicted by network pharmacology, and the drug-constituent-target network was constructed, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the core targets. Molecular docking was performed to investigate the binding affinity between the active constituents and the targets. Finally, SD rats were used for experimental verification. The I/R injury model was established, and the neurological behavior score, infarct volume, and pathological morphology of brain tissue were measured in each group. The content of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-alpha(TNF-α) was determined by enzyme-linked immunosorbent assay(ELISA), and the protein expression of vascular endothelial growth factor(VEGF) by Western blot. A total of 22 active constituents and 17 core targets were screened out. The core targets were involved in 56 GO terms and the major KEGG pathways of TNF signaling pathway, VEGF signaling pathway, and sphingolipid signaling pathway. Molecular docking showed that the active constituents had high affinity to the targets. The results of animal experiment suggested that EOGFA can alleviate the neurological impairment, decrease the cerebral infarct volume and the content of IL-1β, IL-6 and TNF-α, and down-regulate the expression of VEGF. The experiment verified the part results of network pharmacology. This study reflects the multi-component, multi-target, and multi-pathway characteristics of EOGFA. The mechanism of its active constituents is related to TNF and VEGF pathways, which provides a new direction for in-depth research on and secondary development of Gleditsiae Fructus Abnormalis.


Subject(s)
Animals , Rats , Rats, Sprague-Dawley , Network Pharmacology , Oils, Volatile , Gas Chromatography-Mass Spectrometry , Interleukin-6 , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A , Reperfusion Injury , Cerebral Infarction
6.
China Journal of Chinese Materia Medica ; (24): 455-464, 2023.
Article in Chinese | WPRIM | ID: wpr-970482

ABSTRACT

This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.


Subject(s)
Animals , Male , Rats , Apoptosis , Brain Ischemia/metabolism , Caspase 3 , Interleukin-1 , Interleukin-6 , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha/genetics , Flavonoids/pharmacology , Rhododendron/chemistry
7.
Chinese Acupuncture & Moxibustion ; (12): 783-792, 2023.
Article in Chinese | WPRIM | ID: wpr-980796

ABSTRACT

OBJECTIVE@#To observe the effect of Tongdu Tiaoshen (promoting the circulation of the governor vessel and regulating the spirit) electroacupuncture (EA) pretreatment on pyroptosis mediated by peroxisome proliferators-activated receptor γ (PPARγ) of the cerebral cortex in rats with cerebral ischemia reperfusion injury (CIRI) and explore the potential mechanism of EA for the prevention and treatment of CIRI.@*METHODS@#A total of 110 clean-grade male SD rats were randomly divided into a sham-operation group, a model group, an EA group, an EA + inhibitor group and an agonist group, 22 rats in each group. In the EA group, before modeling, EA was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14), with disperse-dense wave, 2 Hz/5 Hz in frequency, 1 to 2 mA in intensity, lasting 20 min; once a day, consecutively for 7 days. On the base of the intervention as the EA group, on the day 7, the intraperitoneal injection with the PPARγ inhibitor, GW9662 (10 mg/kg) was delivered in the EA + inhibitor group. In the agonist group, on the day 7, the PPARγ agonist, pioglitazone hydrochloride (10 mg/kg) was injected intraperitoneally. At the end of intervention, except the sham-operation group, the modified thread embolization method was adopted to establish the right CIRI model in the rats of the other groups. Using the score of the modified neurological severity score (mNSS), the neurological defect condition of rats was evaluated. TTC staining was adopted to detect the relative cerebral infarction volume of rat, TUNEL staining was used to detect apoptosis of cerebral cortical nerve cells and the transmission electron microscope was used to observe pyroptosis of cerebral cortical neural cells. The positive expression of PPARγ and nucleotide-binding to oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex was detected with the immunofluorescence staining. The protein expression of PPARγ, NLRP3, cysteinyl aspartate specific protease-1 (caspase-1), gasdermin D (GSDMD) and GSDMD-N terminal (GSDMD-N) in the cerebral cortex was detected with Western blot. Using the quantitative real-time fluorescence-PCR, the mRNA expression of PPARγ, NLRP3, caspase-1 and GSDMD of the cerebral cortex was detected. The contents of interleukin (IL)-1β and IL-18 in the cerebral cortex of rats were determined by ELISA.@*RESULTS@#Compared with the sham-operation group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.01), pyroptosis was severe, the protein and mRNA expression levels of PPARγ, NLRP3, caspase-1 and GSDMD were elevated (P<0.01); and the protein expression of GSDMD-N and contents of IL-1β and IL-18 were increased (P<0.01) in the model group. When compared with the model group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01) in the EA group and the agonist group; while, in the EA + inhibitor group, the protein expression of PPARγ was increased (P<0.01), the protein and mRNA expression levels of NLRP3 and GSDMD were decreased (P<0.01, P<0.05), the mRNA expression of caspase-1 was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01). When compared with the EA + inhibitor group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.05, P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were declined (P<0.01) in the EA group. Compared with the agonist group, in the EA group, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.05, P<0.01), the mRNA expression of PPARγ was decreased (P<0.01) and the protein expression of GSDMD-N was elevated (P<0.05); and the contents of IL-1β and IL-18 were higher (P<0.01).@*CONCLUSION@#Tongdu Tiaoshen EA pretreatment can attenuate the neurological impairment in the rats with CIRI, and the underlying mechanism is related to the up-regulation of PPARγ inducing the inhibition of NLRP3 in the cerebral cortex of rats so that pyroptosis is affected.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , PPAR gamma/genetics , Pyroptosis , Interleukin-18 , Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Cerebral Cortex , Cerebral Infarction/therapy , Caspases , RNA, Messenger
8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 256-266, 2023.
Article in Chinese | WPRIM | ID: wpr-976561

ABSTRACT

Ischemic stroke is caused by a variety of factors caused by intracerebral artery stenosis or obstruction, can lead to cerebral ischemia, hypoxia, neuronal necrosis and neurological dysfunction and other pathological injuries, with high morbidity, high disability rate, high mortality characteristics. Cerebral ischemia-reperfusion injury is the main secondary injury, which can lead to permanent disability or even death in severe cases. With the development of traditional Chinese medicine(TCM) modernization, the extraction and application of active components of TCM have been paid more and more attention. Salidroside, as the main active component of Rhodirosea, a rare Chinese medicinal herb, has been proved to fight cerebral ischemia injury by inhibiting cell apoptosis, anti-oxidative stress, reducing inflammatory response, protecting blood-brain barrier, regulating autophagy, promoting nerve remodeling and synaptic regeneration in preclinical trials. However, due to its multi-pathway, multi-pathway and multi-target action characteristics, the specific mechanism of salidroside to improve cerebral ischemia injury has not been fully elucidated. By reviewing relevant literature in the past decade, the author reviewed the mechanism of action of salidroside in the treatment of ischemic brain injury, and summarized the recent progress of its pharmacokinetic studies and safety evaluation, in order to provide theoretical basis and new research ideas for the development and clinical application of the active ingredients of traditional Chinese medicine.

9.
Chinese Journal of Biologicals ; (12): 281-2023.
Article in Chinese | WPRIM | ID: wpr-976082

ABSTRACT

@#ObjectiveTo explore the protective effect of Sox11 gene on cerebral ischemia reperfusion injury(CIRI)in mice and its mechanism,so as to provide a new target for the treatment of CIRI.MethodsThe mouse middle cerebral artery occlusion(MCAO)model and Neuro2A cell oxygen glucose deprivation reperfusion(OGDR)model were established and detected for the temporal and spatial distribution of Sox11 in the models by real-time quantitative PCR,Western blot,immunohistochemistry(IHC)and immunohistofluorescence(IHF).The altered expression of some crucial genes in the pathway of apoptosis and inflammation in OGDR model after the disruption of Sox11 expression was detected by Western blot.ResultsThe expression level of Sox11 mRNA and protein increased significantly in both MCAO and Neuro2A OGDR models(P = 0.000 1 ~ 0.038 8);After CIRI,Sox11 expression was elevated in the hippocampal dentate gyrus(DG)region of mice;After interfering with the expression of Sox11 in OGDR model,the expression of apoptosis-related protein Cleaved Caspase 3 significantly increased,while the expression of anti-apoptosis protein Bcl-2 significantly decreased,and the expression of phosphorylated NF-κB(p-NF-κB)protein related to inflammatory reaction also up-regulated significantly.Conclusion Sox11gene had a protective effect against CIRI in mice,and was involved in the regulation of apoptosis and inflammation pathways after CIRI.

10.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 533-540, 2023.
Article in Chinese | WPRIM | ID: wpr-975137

ABSTRACT

ObjectiveTo investigate the effects of dopamine receptor agonist pramipexole and levodopa on emotion and cognition, and mitochondrial membrane potential of rats after global cerebral ischemia-reperfusion injury. MethodsA total of 80 male Sprague-Dawley rats were divided into sham group (n = 20), model group (n = 20), pramipexole group (n = 20) and combined group (n = 20). The latter three groups were used to prepare the model of global cerebral ischemia-reperfusion injury with Pulsinelli's four-vessel occlusion. The pramipexole group was intraperitoneally injected pramipexole 0.5 mg/kg once a day, while the combined group was injected levodopa 50 mg/kg and pramipexole 0.5 mg/kg, for 14 days. Five rats in each group were tested with open field test three, seven and 14 days after modeling; five were tested with Y-maze test seven and 14 days after modeling; five were detected mitochondrial membrane potential three, seven and 14 days after modeling; and five were observed under Nissl's staining14 days after modeling. ResultsCompared with the model group, the number of entries into the central zone (P < 0.05), total distance travelled (P < 0.05) and average velocity (P < 0.05) in the open field test increased in the pramipexole and combined groups seven and 14 days after modeling, duration spent in the central zone increased in the pramipexole and combined groups seven days after modeling (P < 0.05); the rate of spontaneous alternation of Y-maze test increased in the pramipexole and combined groups 14 days after modeling (P < 0.05); mitochondrial membrane potential in hippocampus increased in the pramipexole and combined groups seven and 14 days after modeling (P < 0.05), and it was less in the pramipexole group than in the combined group 14 days after modeling (P < 0.05); and the number of surviving neurons in the hippocampal CA1 increased in the pramipexole and combined groups 14 days after modeling (P < 0.05). ConclusionPramipexole may improve emotion and cognition of rats after global cerebral ischemia-reperfusion injury, and it may be helpful for restoring mitochondrial membrane potential as combining with levodopa.

11.
Chinese Critical Care Medicine ; (12): 995-998, 2022.
Article in Chinese | WPRIM | ID: wpr-956091

ABSTRACT

The cerebral ischemia-reperfusion injury (CIRI) after the cardiac arrest (CA)-cardiopulmonary resuscitation (CPR) was a complex pathophysiology process. Nitric oxide (NO) is a small molecule that mediates cell signal transduction in vivo and plays an important role in the regulation of brain function during ischemia/reperfusion (I/R). S-nitrosoglutathione reductase (GSNOR) inhibitor can regulate the synthesis and release of NO in vivo and has a protective effect on CIRI. Therefore, early administration of GSNOR to CA-CPR patients could be the main treatment method to improve the prognosis of those patients. A large number of studies have been done to improve the prognosis of CA-CPR in recent years. In order to provide reference for further research on the treatment and brain protection of CIRI after CA-CPR, the article reviewed the main mechanisms of brain injury after CA-CPR, the protective effect and mechanism of NO on cerebral I/R injury, the production and regulation of NO, in vivo, and the protective effect of GSNOR inhibitors on CIRI, especially the research progress of GSNOR inhibitors.

12.
Chinese Critical Care Medicine ; (12): 842-847, 2022.
Article in Chinese | WPRIM | ID: wpr-956062

ABSTRACT

Objective:To investigate the effect of M1 microglia-derived exosomes (M1-exo) on neuronal injury after oxygen-glucose deprivation and restoration, and to explore its mechanism.Methods:The mouse microglia BV2 cells grown in logarithmic growth phase were added with 100 μg/L liposolysaccharide (LPS) and 20 μg/L interferon-γ (IFN-γ) to induce the polarization of microglia into M1 phenotype. M1 microglia were identified by Western blotting, quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence. The supernatant of M1 microglia was collected, and exosomes were extracted by ExoQuick-TC TM kit. The morphology of exosomes were observed by transmission electron microscope and nanoparticle tracking analysis (NTA), and the expression of characteristic proteins CD9 and CD63 of exosomes were detected by Western blotting. The well-growing mouse neuroblastoma N2a cells were divided into six groups: the cells in group C were conventionally-cultured; and the cells in group O were subjected to oxygen-glucose deprivation for 3 hours followed by restoration of oxygen-glucose supply 24 hours to establish the model of oxygen-glucose deprivation and restoration injury; and the N2a cells in group E were co-cultured with M1-exo 24 hours after oxygen-glucose deprivation 3 hours; NC group, M group and I group constructed negative control, overexpression and knockdown of microRNA-20a-5p (miR-20a-5p) M1-exo, respectively. The succession of transfection was detected by qPCR and N2a cells in group NC, group M and group I were co-cultured with such transfected M1-exo for 24 hours after oxygen-glucose deprivation 3 hours. Cell viability were detected by cell counting kit-8 (CCK-8) assay, cell apoptosis were detected by flow cytometry, and the expression of miR-20a-5p were detected by qPCR. Results:Compared with M0 microglia, the fluorescence intensity and mRNA and protein expressions of CD32 and inducible nitric oxide synthase (iNOS), specific markers of M1 microglia, were increased [CD32 (fluorescence intensity): 36.919±1.541 vs. 3.533±0.351, CD32 mRNA (2 -ΔΔCt): 4.887±0.031 vs. 1.003±0.012, CD32/β-actin: 2.663±0.219 vs. 1.000±0.028; iNOS (fluorescence intensity): 29.513±1.197 vs. 7.933±0.378, iNOS mRNA (2 -ΔΔCt): 4.829±0.177 vs. 1.000±0.016, iNOS/β-actin: 1.991±0.035 vs. 1.000±0.045; all P < 0.01], indicating M1 microglia were successfully activated. Under electron microscopy, M1-exo had round or oval vesicular bodies with obvious membranous structures, with diameters ranging from 100 nm. Western blotting showed that the exosomes expressed specific CD63 and CD9 proteins. Compared with group C, the cell viability was decreased, the apoptosis rate and the expression of miR-20a-5p were significantly increased in group O [cell viability ( A value): 0.540±0.032 vs. 1.001±0.014, apoptosis rate: (19.857±0.910)% vs. (13.508±0.460)%, miR-20a-5p (2 -ΔΔCt): 5.508±0.291 vs. 1.033±0.101, all P < 0.01]. Compared with O group, cell viability was decreased, apoptosis rate and the expression of miR-20a-5p were increased in group E [cell viability ( A value): 0.412±0.029 vs. 0.540±0.032, apoptosis rate: (31.802±0.647)% vs. (19.857±0.910)%, miR-20a-5p (2 -ΔΔCt): 8.912±0.183 vs. 5.508±0.291, all P < 0.01], indicating that M1 microglia-derived exosomes further aggravated the damage of N2a cells after oxygen-glucose deprivation and restoration. Compared with group E, cell viability was decreased, apoptosis rate and the expression of miR-20a-5p were increased in group M [cell viability ( A value): 0.311±0.028 vs. 0.412±0.029, apoptosis rate: (36.343±0.761)% vs. (31.802±0.647)%, miR-20a-5p (2 -ΔΔCt): 32.348±0.348 vs. 8.912±0.183, all P < 0.01]; and the cell viability was increased, apoptosis rate and the expression of miR-20a-5p were decreased in group I [cell viability ( A value): 0.498±0.017 vs. 0.412±0.029, apoptosis rate: (26.437±0.793)% vs. (31.802±0.647)%, miR-20a-5p (2 -ΔΔCt): 6.875±0.219 vs. 8.912±0.183, all P < 0.01]. There was no significant difference in cell viability, apoptosis rate and the expression of miR-20a-5p between group E and group NC. Conclusion:M1 microglia-derived exosomes aggravate the injury of neurons after oxygen and glucose deprivation and reoxygenation, which may be related to miR-20a-5p carried by M1-exo.

13.
Braz. j. med. biol. res ; 55: e12145, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1384152

ABSTRACT

Dexmedetomidine (DEX) is known to provide neuroprotection against cerebral ischemia and reperfusion injury (CIRI), but the exact mechanisms remain unclear. This study was conducted to investigate whether DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation through the JAK2/STAT3 signaling pathway. Middle cerebral artery occlusion (MCAO) was performed to establish a cerebral ischemia/reperfusion (I/R) model. Specific-pathogen-free male Sprague-Dawley rats were randomly divided into Sham, I/R, DEX, DEX+IL-6, and AG490 (a selective inhibitor of JAK2) groups. The Longa score, TTC staining, and HE staining were used to evaluate brain damage. ELISA was used to exam levels of TNF-α. Western blotting was used to assess the levels of JAK2, phosphorylated-JAK2 (p-JAK2), STAT3, and phosphorylated-STAT3 (p-STAT3). Our results suggested that both pretreatment with DEX and AG490 decreased the Longa score and cerebral infarct areas following cerebral I/R. After treatment with IL-6, the effects of DEX on abrogating these pathological changes were reduced. HE staining revealed that I/R-induced neuronal pathological changes were attenuated by DEX application, consistent with the AG490 group. However, these effects of DEX were abolished by IL-6. Furthermore, TNF-α levels were significantly increased in the I/R group, accompanied by an increase in the levels of the p-JAK2 and p-STAT3. DEX and AG490 pretreatment down-regulated the expressions of TNF-α, p-JAK2, and p-STAT3. In contrast, the down-regulation of TNF-α, p-JAK2, and p-STAT3 induced by DEX was reversed by IL-6. Collectively, our results indicated that DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation via negatively regulating the JAK2/STAT3 signaling pathway.

14.
Chinese Critical Care Medicine ; (12): 325-328, 2022.
Article in Chinese | WPRIM | ID: wpr-931874

ABSTRACT

Cerebral ischemia/reperfusion (I/R) injury refers to an aggravated brain tissue damage caused by the restoration of blood supply after acute ischemia for a period of time. Its pathogenesis is complex, including oxidative stress, inflammatory response, and excitatory amino acid toxicity. The effective clinical treatments of cerebral I/R injury after ischemic stroke (IS) are limited. Nuclear factor E 2-related factor 2 (Nrf2), the most critical antioxidant transcription factor in cells, can coordinate multiple cytoprotective factors to inhibit oxidative stress. Since Nrf2 signaling pathway is considered to be one of the most important cellular defense mechanisms against oxidative stress, targeting Nrf2 intervention has become an attractive therapeutic strategy in the prevention and treatment of cerebral I/R injury. This review focuses on the structure, regulation and function of Nrf2 signaling pathway, as well as its activation and potential therapeutic targets in cerebral I/R injury. The important role and future potential of Nrf2 pathway in the pathogenesis of cerebral I/R injury were discussed.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 248-257, 2022.
Article in Chinese | WPRIM | ID: wpr-940750

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is a further injury of brain tissue after the recovery of blood supply in ischemic stroke, which seriously affects the quality of life of patients. The pathological mechanism of CIRI is complex, mainly involving excitatory amino acid toxicity, apoptosis, inflammation, and oxidative stress. Studies have proved that Chinese herbal medicines and their active components have unique advantages and good application prospects in the prevention and treatment of CIRI. Quercetin is a flavonoid ubiquitous in a variety of Chinese medicinal herbs. It can alleviate CIRI and reduce brain injury through inhibiting inflammation, oxidation, and apoptosis, protecting blood-brain barrier, and activating mitophagy. However, little is known about the specific mechanism and molecular targets. In view of the low bioavailability and poor solubility of quercetin, researchers have developed a variety of delivery systems to facilitate the dispersion of quercetin, improve chemical stability, and increase clinical application. Furthermore, researchers have tested the long-term safety of quercetin and confirmed that low-dose quercetin has good safety. By reviewing the relevant studies in recent years, we summarized the targets, mechanism, delivery, and safety of quercetin in the treatment of CIRI, aiming to provide a theoretical basis for the further development and application of quercetin.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 11-18, 2022.
Article in Chinese | WPRIM | ID: wpr-940581

ABSTRACT

ObjectiveTo observe the protective effect of Sanhuatang and its modifications on the brain tissue of rats exposed to cerebral ischemia-reperfusion injury (CIRI) and explore its action mechanism and compatibility characteristics. MethodOne hundred and forty SD male rats of clean grade were randomly divided into the control group, sham-operation group, and operation group. The Longa suture method was employed to establish the CIRI model. The successfully modeled CIRI rats were further divided into five groups, namely the model group, nimodipine group, Sanhuatang without Notopterygii Rhizoma et Radix group, Notopterygii Rhizoma et Radix group, and Sanhuatang group, and treated with the corresponding medicines by gavage for five days. The cerebral infarct size in each group was examined by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and the pathological changes in the brain tissue were observed by hematoxylin-eosin (HE) staining and electron microscopy. The mRNA and protein expression levels of Claudin-5, Occludin, and zonula occludens-1 (ZO-1) in brain tissues were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the control group, the model group exhibited markedly increased infarct size, obvious changes in brain morphology and ultrastructure, and down-regulated mRNA and protein expression of Claudin-5, Occludin, and ZO-1 (P<0.01). Compared with the model group, both nimodipine and Sanhuatang significantly decreased the infarct size (P<0.01) and relived the pathological changes. The infarct sizes in the Sanhuatang without Notopterygii Rhizoma et Radix group and Notopterygii Rhizoma et Radix group were reduced without exhibiting a statistically significant difference. The mRNA and protein expression levels of Claudin-5, Occludin, and ZO-1 in the nimodipine group, Sanhuatang group, and Notopterygii Rhizoma et Radix group were up-regulated significantly in comparison with those in the model group (P<0.01, P<0.01). The mRNA and protein expression levels of Claudin-5 and ZO-1 were higher in the Notopterygii Rhizoma et Radix group than in the Sanhuatang without Notopterygii Rhizoma et Radix group (P<0.01, P<0.01). ConclusionSanhuatang exerts the protective effect against CIRI in rats possibly by regulating the expression of Claudin-5, Occludin, and ZO-1 and improving the blood-brain barrier function. Notopterygii Rhizoma et Radix in Sanhuatang may play an important role in the protection of rats from CIRI.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 121-130, 2022.
Article in Chinese | WPRIM | ID: wpr-940296

ABSTRACT

ObjectiveTo study the effect of Huazhuo Jiedu Huoxue Tongluo (HJHT) prescription on the intestinal flora in rats with cerebral ischemia-reperfusion injury, and to explore the mechanism of Chinese medicinal prescription regulating intestinal flora to restore the balance of brain-gut axis. MethodFifty male SPF SD rats were randomly assigned into sham group, model group, high-dose HJHT group (25.0 g·kg-1), medium-dose HJHT group (12.5 g·kg-1), and low-dose HJHT group (6.25 g·kg-1), with 10 rats in each group. The rat model of permanent middle cerebral artery infarction was established according to Longa method and previous research experience, and reperfusion was performed 2 h after ischemia. The recovery of neurological function deficit and the percentage of cerebral infarction area were detected 72 h after administration. Real-time PCR was performed to detect the mRNA levels of Occludin and zonula occludens-1 (ZO-1) in rat colon. Hematoxylin-eosin (HE) staining was conducted to reveal the intestinal damage. The feces of 6 rats in each group were collected for 16S rRNA sequencing. The expression of Treg and Th17 in intestinal tissue, peripheral blood, and brain tissue were detected. ResultCompared with the sham group, the model group showed obvious neurological deficit (P<0.05) and large cerebral infarction area (P<0.05). High-dose and medium-doses HJHT alleviated the symptoms of neurological impairment (P<0.05) and reduce the cerebral infarction area (P<0.05) compared with the model group. Compared with the sham group, the model group showed destroyed structure of colonic mucosa and incomplete epithelial cells and goblet cells, while high-dose and medium-doses HJHT alleviated such changes. The mRNA levels of Occludin and ZO-1 in the model group were lower than those in the sham group (P<0.05),and the high-dose HJHT groups were higher than the model group (P<0.05). The intestinal flora structure was significantly different between the model group and the sham group while similar between the high-dose HJHT group and sham group. Compared with the sham group, the model group showed down-regulated expression of Treg and up-regulated expression of Th17 in the intestinal tissue, peripheral blood, and brain tissue, and high-dose and medium-dose HJHT alleviated the changes in the expression of Treg and Th17 in the model group (P<0.05). ConclusionHuazhuo Jiedu Huoxue Tongluo prescription may improve the permeability of intestinal wall by adjusting the abundance and diversity of intestinal microorganisms to reduce the migration of intestinal Th17 cells toward the ischemic lateral brain tissue, mitigate the inflammatory response, and thus alleviate the cerebral ischemia-reperfusion injury in rats.

18.
Chinese Journal of Applied Physiology ; (6): 25-31, 2022.
Article in Chinese | WPRIM | ID: wpr-927892

ABSTRACT

Objective: To investigate the effects of Zhongfeng capsule on the autophagy-related proteins expression in rats with cerebral ischemia/reperfusion injury (CI/ RI), and to explore its neural protection mechanisms of the decoction. Methods: Rat middle cerebral artery ischemia/reperfusion injury model (ischemia for 2 h, reperfusion for 24 h) was prepared by the improved line plug method. Sixty male SD rats were randomly divided into sham operation group, model group, butylphthalide group(0.054 g/kg), Zhongfeng capsule high-dose groups (1.08 g/kg), Zhongfeng capsule middle-dose groups (0.54 g/kg), Zhongfeng capsule low-dose groups (0.27 g/kg), with 10 rats in each group. Rats were treated with Zhongfeng capsule by gavage once a day for 10 days. The rats were sacrificed and the brain tissue was obtained after the experiment in each group. Score neurological deficit was evaluated after 24 h of the last intervention in rat of each group. The pathological changes of brain tissue were observed by HE staining. The serum levels of estradiol (E2) and follicle stimulating hormone (FSH) were determined by ELISA. The expressions of key genes and proteins of PI3K/Akt/Beclin1 signaling pathway in brain tissue were detected by qRT-PCR and Western blot respectively. Results: Compared with the sham operation group, the body weight and protein expressions of p-PI3k and p-Akt in brain tissue of rats were decreased significantly in the model group, while the brain index, neurological deficit score, gene and protein expressions of Beclin1 and LC3 were increased markedly in the model group(P<0.05 or P<0.01). In the model group, nerve cells of brain tissue were loosely packed, interstitial edema, triangular in shape, nuclear pyknosis and dark-blue staining were observed. Compared with the model group, the body weight of rats was increased obviously, the neurological deficit score was decreased significantly and the pathological injury of brain tissue was alleviated evidently in high-dose of Zhongfeng capsule group (P<0.05). The brain index, the gene and protein expressions of Beclin1 and LC3 were decreased apparently in Zhongfeng capsule treatment groups(P<0.05 or P<0.01), while the expressions of p-PI3k and p-Akt in brain tissue were increased evidently in Zhongfeng capsule treatment groups(P<0.05 or P<0.01). Conclusion: Zhongfeng capsule can inhibit autophagy and improve brain neurons lesion of CIRI rats, the mechanism may be related to regulate the expression of Beclin1 and LC3 in PI3K/Akt/Beclin1 signaling pathway.


Subject(s)
Animals , Male , Rats , Autophagy-Related Proteins/pharmacology , Beclin-1/metabolism , Body Weight , Brain , Brain Ischemia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy
19.
Chinese Critical Care Medicine ; (12): 1200-1205, 2022.
Article in Chinese | WPRIM | ID: wpr-991941

ABSTRACT

Objective:To explore the effect of extracellular signal-regulated kinase (ERK) inhibitor PD98059 on calpain-related proteins in the brain, and to understand the pathophysiological changes of calpain in cerebral ischemia/reperfusion injury (CIRI).Methods:Forty-two rats were divided into sham operation (Sham) group ( n = 6), model group ( n = 12), dimethyl sulfoxide (DMSO) control group ( n = 12), and PD98059 group ( n = 12) by random number table. The rat model of CIRI induced by cardiac arrest-cardiopulmonary resuscitation (CA-CPR) was reproduced by transesophageal electrical stimulation to induce ventricular fibrillation. In the Sham group, only the basic operations such as anesthesia, tracheal intubation, and arteriovenous catheterization were performed without CA-CPR. The rats in the DMSO control group and PD98059 group were injected with DMSO or PD98059 0.30 mg/kg via femoral vein, respectively, 30 minutes after the restoration of spontaneous circulation (ROSC), and rats in the Sham group and model group were given the same amount of normal saline. The duration of CPR, 24-hour survival rate and neurological deficit score (NDS) after ROSC were recorded. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the pathological changes of the cerebral cortex. The expressions of phosphorylated ERK (p-ERK), ERK, calpastatin, calpain-1, and calpain-2 were detected by Western blotting. The co-expression of p-ERK and calpain-2 was detected by double immunofluorescence. Results:There were no significant differences in the duration of CPR and 24-hour survival rate among all groups. In the model group, the nuclei of the cerebral cortex were obviously deformed and pyknotic, cells vacuoles and tissues were arranged disorderly, Nissl corpuscles were significantly reduced, NDS scores were also significantly reduced, level of ERK phosphorylation was increased, and calpain-2 protein was significantly up-regulated compared with the Sham group. There was no significant difference in the above parameters between the DMSO control group and the model group. After intervention with PD98059, the pathological injury of brain tissue was significantly improved, Nissl corpuscles were significantly increased, the NDS score was significantly higher than that in the model group [75.0 (72.0, 78.0) vs. 70.0 (65.0, 72.0), P < 0.05], the level of ERK phosphorylation and calpain-2 protein expression were significantly lower than those in the model group [p-ERK (p-ERK/ERK): 0.65±0.12 vs. 0.92±0.05, calpain-2 protein (calpain-2/GAPDH): 0.73±0.10 vs. 1.07±0.14, both P < 0.05], while there was no significant difference in the expressions of calpastatin and calpain-1 in the cerebral cortex among all the groups. Double immunofluorescence staining showed that p-ERK and calpain-2 were co-expressed in cytosol and nucleus, and the co-expression rate of p-ERK and calpain-2 in the model group was significantly higher than that in the Sham group [(38.6±4.3)% vs. (9.2±3.5)%, P < 0.05], while it was significantly lowered in the PD98059 group compared with the model group [(18.2±7.0)% vs. (38.6±4.3)%, P < 0.05]. Conclusions:ERK together with calpain-2 participated in CIRI induced by CA-CPR. PD98059 inhibited the expression of calpain-2 and ERK phosphorylation. Therefore, ERK/calpain-2 may be a novel therapeutic target for CIRI.

20.
Acta Pharmaceutica Sinica B ; (6): 2330-2347, 2022.
Article in English | WPRIM | ID: wpr-929377

ABSTRACT

Ischemic brain stroke is pathologically characterized by tissue acidosis, sustained calcium entry and progressive cell death. Previous studies focusing on antagonizing N-methyl-d-aspartate (NMDA) receptors have failed to translate any clinical benefits, suggesting a non-NMDA mechanism involved in the sustained injury after stroke. Here, we report that inhibition of intracellular proton-sensitive Ca2+-permeable transient receptor potential vanilloid 3 (TRPV3) channel protects against cerebral ischemia/reperfusion (I/R) injury. TRPV3 expression is upregulated in mice subjected to cerebral I/R injury. Silencing of TRPV3 reduces intrinsic neuronal excitability, excitatory synaptic transmissions, and also attenuates cerebral I/R injury in mouse model of transient middle cerebral artery occlusion (tMCAO). Conversely, overexpressing or re-expressing TRPV3 increases neuronal excitability, excitatory synaptic transmissions and aggravates cerebral I/R injury. Furthermore, specific inhibition of TRPV3 by natural forsythoside B decreases neural excitability and attenuates cerebral I/R injury. Taken together, our findings for the first time reveal a causative role of neuronal TRPV3 channel in progressive cell death after stroke, and blocking overactive TRPV3 channel may provide therapeutic potential for ischemic brain injury.

SELECTION OF CITATIONS
SEARCH DETAIL